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Contests

games where

• a set of agents compete 

• by putting costly and irreversible effort 

• to win valuable prizes

e.g., sports (more later)



Tullock contest

• 𝑛 agents

• prize = 1 (normalized)

• effort of agent 𝑖: 𝑥𝑖 ≥ 0

• effort profile 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛

• proportional allocation

• non-negative, continuous, increasing, (weakly) convex cost

• expected utility

𝑢𝑖 𝒙 =
𝑥𝑖

σ𝑗 𝑥𝑗
− 𝑐𝑖 𝑥𝑖



Example

Agents Cost Function
𝒄𝒊(𝒙𝒊)

𝑐1 𝑥1 =
𝑥1

2

𝑐2 𝑥2 = 𝑥2

𝑐3 𝑥3 = 𝑥3
2

Effort
𝒙𝒊

0.2

0.1

0.3

Cost

0.1

0.1

0.09

Reward
(proportional)

2

6
= 0.33

1

6
= 0.17

3

6
= 0.5

Utility

0.33 – 0.1
= 0.23

0.17 – 0.1
= 0.07

0.5 – 0.09
= 0.41



Some applications

• proof-of-work (stake) cryptocurrencies like Bitcoin (Etherium)
• effort (stake): 𝑥𝑖

• probability of creating the block: 
𝑥𝑖

σ𝑗 𝑥𝑗

• computational (opportunity) cost: 𝑐𝑖(𝑥𝑖)

• rent-seeking (work by Tullock)

• political lobbying and donation

• research & development races

• extensions (discussed later)
• parallel contests: crowdsourcing (including in blockchains) 
• group contests



Properties

strictly concave utility function 𝑢𝑖 𝒙 =
𝑥𝑖

σ𝑗 𝑥𝑗
− 𝑐𝑖 𝑥𝑖

⟹ unique best response (BR) 𝐵𝑅𝑖 𝒙−𝑖 = argmax
𝑧≥0

𝑢𝑖(𝑧, 𝒙−𝑖)

unique pure-strategy Nash equilibrium (non-trivial)



Talk overview

• learning dynamics
• best-response dynamics

• linear cost functions a.k.a. lottery contest

• convex cost functions

• continuous best-response dynamics, fictitious play, …

• extensions/variations of Tullock contests
• parallel contests

• group contests

• discrete action spaces



Learning dynamics



Why study learning dynamics?

• predict agents’ behavior

• equilibrium analysis assumes all agents
• know the rules of the game

• know everyone’s utility function

• are fully rational

conceptually and empirically these assumptions may not hold

• learning dynamics
• agents respond to the incentives provided by their environment

• … in a decentralized manner

• e.g., best-response, fictitious play, no-regret dynamics



Best-response (BR) dynamics

• BR dynamics
• initial state: 

𝒙(0) = 𝑥1(0), 𝑥2(0), … , 𝑥𝑛(0)

• update:
𝑥𝑖 𝑡 + 1 = 𝐵𝑅𝑖 𝒙−𝑖 𝑡

• a random agent moves at each time step 
(say picked uniformly for this talk)



Linear costs

𝑢𝑖 𝒙 =
𝑥𝑖

σ𝑗 𝑥𝑗
− 𝑐𝑖 𝑥𝑖

linear



Results – homogeneous agents

homogeneous: same cost function

convergence to an 𝜖-approx equilibrium in
• 2 agents

log log
1

𝜖
+ log log

1

𝛾
+ Θ 1

• 𝑛 ≥ 3 agents, with high probability

O 𝑛 log
𝑛

𝜖
+ log log

1

𝛾
, Ω 𝑛 log 𝑛 + log

1

𝜖
+ log log

1

𝛾

𝛾 is function of initial state (in most cases, the smallest positive effort)



Results – non-homogeneous 

non-convergence of BR dynamics

• instances that lead to a cycle
• generic: set of instances (and starting points) that lead to cycle have positive 

measure

𝑐1𝑥1 = 𝑥1

 𝑐2𝑥2 =
𝑥2

10

cycle of 6 steps



Proof idea for n ≥ 3 homogeneous agents

combine:

• coordinate descent

• smooth and strongly convex potential function (close to equilibrium)

• Markov chains (away from equilibrium)



Coordinate descent

an arbitrary convex function 𝑔(𝒙)



Smoothness and strong-convexity



Potential function

• smooth and strongly convex function + coordinate descent

• 𝑂 log
1

𝜖
 convergence to 𝜖-approx. minima

• construct such a potential near the equilibrium

• away from the equilibrium: alternative techniques



*

(A) warm-up 
phase

(C) total effort 
sufficiently large

* (equilibrium)

(B) total effort small



*

(A) warm-up 
phase

(C) total effort 
sufficiently large

* (equilibrium)

(B) total effort small

Region (C): high total effort

• smooth and strongly convex potential

• potential decreases rapidly (coordinate descent ≡ BR dynamics)



*

(A) warm-up 
phase

(C) total effort 
sufficiently large

* (equilibrium)

(B) total effort small

Region (B): double-exponentially decreasing Markov chain on total 
effort



Convex costs

𝑢𝑖 𝒙 =
𝑥𝑖

σ𝑗 𝑥𝑗
− 𝑐𝑖 𝑥𝑖

weakly convex



Convex costs

(homogeneous agents) convergence to an 𝜖-appx equilibrium

• 2 agents (same bound as linear costs)

log log
1

𝜖
+ log log

1

𝛾
+ Θ 1

• 𝑛 ≥ 3 agents (weaker bound in 𝑛 than linear costs)

O 𝑛2log(𝑛) log
𝑛

𝜖
+ log log

1

𝛾



Analysis

• analysis for the linear case doesn’t extend. Some challenges:
• no closed-form formula for BR

• no potential function

• in the analysis
• an adversarial/approximate linearization of the BR dynamics

• discounted-sum dynamics



Convex cost

*

warm-up 
phase

discounted-sum
    dynamics

* (equilibrium)

competition
  increases



Discounted-sum dynamics

• initial state:
𝒛(0) = 𝑧1 0 , 𝑧2 0 , … , 𝑧𝑛 0 ∈ 𝐑n

• update (for random 𝑖): 

𝑧𝑖(𝑡 + 1) = −𝛽𝑡 ⋅ ෍

𝑗≠𝑖

𝑧𝑗 𝑡

𝛽𝑡 picked adversarially in 0, 𝐵  where 0 ≤ 𝐵 < 1.

• we show that this dynamics converges to 0 rapidly



Convergence

• potential function 𝟏 𝑧𝑗 < 0  is the indicator function

𝜙 𝒛 = max ෍

𝑗

𝑧𝑗 ⋅ 𝟏 𝑧𝑗 > 0 , ෍

𝑗

−𝑧𝑗 ⋅ 𝟏 𝑧𝑗 < 0
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-2

4

3

3 1[    ]𝒛 =
-5

-3

-2
4

3

3

1𝜙 𝒛



Case 1: smaller side
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Case 2: larger side, large element 
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Case 3: larger side, small element 
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Continuous BR dynamics

• (usual) BR dynamics: 

  𝑥𝑖 𝑡 + 1 = 𝐵𝑅𝑖 𝒙−𝑖 𝑡

  𝑥𝑖 𝑡 + 1 = 𝑥𝑖 𝑡 + 𝐵𝑅𝑖 𝒙−𝑖 𝑡 − 𝑥𝑖 𝑡

• small Δ𝑡 steps

  𝑥𝑖 𝑡 + Δ𝑡 = 𝑥𝑖 𝑡 + Δ𝑡 ⋅ 𝐵𝑅𝑖 𝒙−𝑖 𝑡 − 𝑥𝑖 𝑡

• continuous BR dynamics
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= lim

Δ𝑡→0

𝑥𝑖 𝑡 + Δ𝑡 − 𝑥𝑖 𝑡

Δ𝑡
= 𝐵𝑅𝑖 𝒙−𝑖 𝑡 − 𝑥𝑖 𝑡



Results

• continuous BR dynamics
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝐵𝑅𝑖 𝒙−𝑖 𝑡 − 𝑥𝑖 𝑡

   Result: converges to an 𝜖-approximate equilibrium 

  for non-homogeneous agents in O log
1

𝜖
 time

   Idea:  Lyapunov function argument

• small Δ𝑡 steps

  𝑥𝑖 𝑡 + Δ𝑡 = 𝑥𝑖 𝑡 + Δ𝑡 ⋅ 𝐵𝑅𝑖 𝒙−𝑖 𝑡 − 𝑥𝑖 𝑡
   
   Result: always converges if Δ𝑡 ≤

𝜅1

𝑛
  instances that cycle if Δ𝑡 ≥

𝜅2

𝑛
  for constants 𝜅1, 𝜅2

   Idea:  Taylor expansion of the Lyapunov function



Fictitious play and generalizations

• 𝑥𝑖 𝑡 + 1 = 𝐵𝑅𝑖
1

𝑡
σ𝜏=1

𝑡 𝒙−𝑖 𝜏  

• generalization – weighted average

𝑥𝑖 𝑡 + 1 = 𝐵𝑅𝑖

σ𝜏=1
𝑡 𝑤𝜏 𝒙−𝑖 𝜏

σ𝜏=1
𝑡 𝑤𝜏

• converges if 
𝑤𝑡

σ𝜏=1
𝑡 𝑤𝜏

→ 0 and σ𝑡 𝑤𝑡 → ∞ as 𝑡 → ∞



Open problems (related to learning dynamics)

• other dynamics: best response to moving average, etc.

• other games (generalizations of Tullock contests)
• aggregative games

• Cournot games

• diagonally strictly concave games [Rosen 65]

• learning with bandit feedback

• agents know whether they win or not (𝑖 wins with probability 
𝑥𝑖

σ𝑗 𝑥𝑗
)

• but don’t see others’ actions

• study Bayesian/statistical learning models



Extensions of Tullock contests
less well understood – open problems



Parallel contests

• 𝑚 Tullock contests run in parallel

• each agent can play only one

• if agent 𝑖 picks contest 𝑗, her utility

𝑢𝑖,𝑗 … = 𝑣𝑖,𝑗

𝑥𝑖,𝑗

σ𝑘 𝑥𝑘,𝑗
− 𝑐𝑖,𝑗(𝑥𝑖,𝑗)

• 𝑥𝑖,𝑗: agent 𝑖’s effort for contest 𝑗 

• 𝑣𝑖,𝑗: agent 𝑖’s value for contest 𝑗 

• 𝑐𝑖,𝑗: agent 𝑖’s cost function for contest 𝑗 

• e.g., crowdsourcing, etc. (applications where agents have multiple options)

• upcoming work: existence/non-existence and computation
   of pure-strategy Nash equilibrium



Group contests

• (back to only one Tullock contest)

• partition agents into 𝑘 groups: 𝐺1, 𝐺2, … , 𝐺𝑘

• if agent 𝑖 ∈ 𝐺𝑙  her utility

𝑢𝑖 𝒙 =
σ𝑗∈𝐺𝑙

𝑥𝑗

σ𝑗 𝑥𝑗
− 𝑐𝑖 𝑥𝑖

• opportunity for free riding

• e.g., political party donation, upkeep of a blockchain system



Discrete action spaces

• instead of any effort 𝑥𝑖 ∈ 𝐑≥0

• discrete actions 𝑥𝑖 ∈ 𝑋𝑖, where 𝑋𝑖  is a finite set of 𝐑≥0

• complexity of computing an equilibrium: open





Refernences

• Best-Response Dynamics in Lottery Contests
Abheek Ghosh, Paul W. Goldberg. EC '23. 

• Best-Response Dynamics in Tullock Contests with Convex Costs
Abheek Ghosh. WINE ‘23.

• Continuous-Time Best-Response and Related Dynamics in Tullock 
Contests with Convex Costs
Edith Elkind, Abheek Ghosh, Paul W. Goldberg. WINE '24.



Remark

general Tullock model (with concave utility), 𝑟 ≤ 1

𝑢𝑖 𝒙 =
𝑥𝑖

𝑟

σ𝑗 𝑥𝑗
𝑟 − 𝑐𝑖 𝑥𝑖 ≡

𝑦𝑖

σ
𝑗 𝑦𝑗

− 𝑐𝑖 𝑦𝑖 = 𝑢𝑖 𝒚

equivalent to the model mentioned earlier by change of variables

• 𝑥𝑖
𝑟 → 𝑦𝑖

𝑐𝑖 𝑥𝑖 → 𝑐𝑖 𝑦
𝑖

1

𝑟 → 𝑐𝑖 𝑦𝑖   also convex as 𝑟 ≤ 1
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