Tullock Contests (Contests with Proportional Allocation) Learning Dynamics ...

Abheek Ghosh

Joint work with Edith Elkind and Paul Goldberg

Contests

games where

- a set of agents compete
- by putting costly and irreversible effort
- to win valuable prizes
- e.g., sports (more later)

Tullock contest

- n agents
- prize = 1 (normalized)
- effort of agent $i: x_i \ge 0$
- effort profile $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$
- proportional allocation
- non-negative, continuous, increasing, (weakly) convex cost
- expected utility

$$u_i(\mathbf{x}) = \frac{x_i}{\sum_j x_j} - c_i(x_i)$$

Example

Agents	Effort x _i	Reward (proportional)	Cost Function $c_i(x_i)$	Cost	Utility
	0.2	$\frac{2}{6} = 0.33$	$c_1(x_1) = \frac{x_1}{2}$	0.1	0.33 – <mark>0.1</mark> = 0.23
	0.1	$\frac{1}{6} = 0.17$	$c_2(x_2) = x_2$	0.1	0.17 - 0.1 = 0.07
	0.3	$\frac{3}{6} = 0.5$	$c_3(x_3) = x_3^2$	0.09	0.5 – 0.09 = 0.41

Some applications

- proof-of-work (stake) cryptocurrencies like Bitcoin (Etherium)
 - effort (stake): x_i
 - probability of creating the block: $\frac{x_i}{\sum_i x_i}$
 - computational (opportunity) cost: $c_i(x_i)$
- rent-seeking (work by Tullock)
- political lobbying and donation
- research & development races
- extensions (discussed later)
 - parallel contests: crowdsourcing (including in blockchains)
 - group contests

Properties

strictly concave utility function

$$u_i(\mathbf{x}) = \frac{x_i}{\sum_j x_j} - c_i(x_i)$$

 \Rightarrow unique best response (BR)

$$BR_i(\mathbf{x}_{-i}) = \underset{z \ge 0}{\operatorname{argmax}} u_i(z, \mathbf{x}_{-i})$$

unique pure-strategy Nash equilibrium (non-trivial)

Talk overview

- learning dynamics
 - best-response dynamics
 - linear cost functions a.k.a. lottery contest
 - convex cost functions
 - continuous best-response dynamics, fictitious play, ...
- extensions/variations of Tullock contests
 - parallel contests
 - group contests
 - discrete action spaces

Learning dynamics

Why study learning dynamics?

- predict agents' behavior
- equilibrium analysis assumes all agents
 - know the rules of the game
 - know everyone's utility function
 - are fully rational

conceptually and empirically these assumptions may not hold

- learning dynamics
 - agents respond to the incentives provided by their environment
 - ... in a decentralized manner
 - e.g., best-response, fictitious play, no-regret dynamics

Best-response (BR) dynamics

- BR dynamics
 - initial state:

$$\mathbf{x}(0) = (x_1(0), x_2(0), \dots, x_n(0))$$

• update:

$$x_i(t+1) = BR_i(\boldsymbol{x}_{-i}(t))$$

• a random agent moves at each time step (say picked uniformly for this talk)

Linear costs

Results – homogeneous agents

homogeneous: same cost function

convergence to an ϵ -approx equilibrium in

• 2 agents $\log \log \left(\frac{1}{\epsilon}\right) + \log \log \left(\frac{1}{\gamma}\right) + \Theta(1)$ • $n \ge 3$ agents, with high probability $O\left(n \log \left(\frac{n}{\epsilon}\right) + \log \log \left(\frac{1}{\gamma}\right)\right), \qquad \Omega\left(n \log(n) + \log \left(\frac{1}{\epsilon}\right) + \log \log \left(\frac{1}{\gamma}\right)\right)$

 γ is function of initial state (in most cases, the smallest positive effort)

Results – non-homogeneous

non-convergence of BR dynamics

- instances that lead to a cycle
 - generic: set of instances (and starting points) that lead to cycle have positive measure

Proof idea for $n \geq 3$ homogeneous agents

combine:

- coordinate descent
- smooth and strongly convex potential function (close to equilibrium)
- Markov chains (away from equilibrium)

Coordinate descent

an arbitrary convex function g(x)

Smoothness and strong-convexity

Potential function

- smooth and strongly convex function + coordinate descent • $O\left(\log\left(\frac{1}{\epsilon}\right)\right)$ convergence to ϵ -approx. minima
- construct such a potential near the equilibrium
- away from the equilibrium: alternative techniques

Region (C): high total effort

- smooth and strongly convex potential
- potential decreases rapidly (coordinate descent \equiv BR dynamics)

Region (B): double-exponentially decreasing Markov chain on total effort

Convex costs

$$u_i(\mathbf{x}) = \frac{x_i}{\sum_j x_j} + c_i(x_i)$$

weakly convex

Convex costs

(homogeneous agents) convergence to an ϵ -appx equilibrium

• 2 agents (same bound as linear costs)

$$\log \log \left(\frac{1}{\epsilon}\right) + \log \log \left(\frac{1}{\gamma}\right) + \Theta(1)$$

• $n \ge 3$ agents (weaker bound in n than linear costs)

$$O\left(n^2\log(n)\log\left(\frac{n}{\epsilon}\right) + \log\log\left(\frac{1}{\gamma}\right)\right)$$

Analysis

- analysis for the linear case doesn't extend. Some challenges:
 - no closed-form formula for BR
 - no potential function
- in the analysis
 - an adversarial/approximate linearization of the BR dynamics
 - discounted-sum dynamics

Convex cost

Discounted-sum dynamics

• initial state:

$$\mathbf{z}(0) = (z_1(0), z_2(0), \dots, z_n(0)) \in \mathbf{R}^n$$

• update (for random *i*):

$$z_i(t+1) = -\beta_t \cdot \sum_{j \neq i} z_j(t)$$

 β_t picked adversarially in [0, B] where $0 \le B < 1$.

• we show that this dynamics converges to 0 rapidly

Convergence

• potential function $\mathbf{1}(z_j < 0)$ is the indicator function

Case 1: smaller side

Case 2: larger side, large element

Case 3: larger side, small element

Continuous BR dynamics

• (usual) BR dynamics:

$$x_{i}(t+1) = BR_{i}(x_{-i}(t))$$

$$x_{i}(t+1) = x_{i}(t) + (BR_{i}(x_{-i}(t)) - x_{i}(t))$$

• small Δt steps

$$x_i(t + \Delta t) = x_i(t) + \Delta t \cdot \left(BR_i(\boldsymbol{x}_{-i}(t)) - x_i(t) \right)$$

• continuous BR dynamics $\frac{dx_i(t)}{dt} = \lim_{\Delta t \to 0} \frac{x_i(t + \Delta t) - x_i(t)}{\Delta t} = BR_i(\mathbf{x}_{-i}(t)) - x_i(t)$

Results

- continuous BR dynamics $\frac{dx_i(t)}{dt} = BR_i(\mathbf{x}_{-i}(t)) - x_i(t)$
 - Result:converges to an ϵ -approximate equilibriumfor non-homogeneous agents in $O\left(\log\left(\frac{1}{\epsilon}\right)\right)$ time
 - Idea: Lyapunov function argument
- small Δt steps

$$x_i(t + \Delta t) = x_i(t) + \Delta t \cdot \left(BR_i(\boldsymbol{x}_{-i}(t)) - x_i(t) \right)$$

Result:always converges if $\Delta t \leq \frac{\kappa_1}{n}$
instances that cycle if $\Delta t \geq \frac{n}{2}$ for constants κ_1, κ_2 Idea:Taylor expansion of the Lyapunov function

Fictitious play and generalizations

•
$$x_i(t+1) = BR_i\left(\frac{1}{t}\sum_{\tau=1}^t \mathbf{x}_{-i}(\tau)\right)$$

• generalization – weighted average

$$x_i(t+1) = BR_i\left(\frac{\sum_{\tau=1}^t w_\tau x_{-i}(\tau)}{\sum_{\tau=1}^t w_\tau}\right)$$

• converges if
$$\frac{w_t}{\sum_{\tau=1}^t w_\tau} \to 0$$
 and $\sum_t w_t \to \infty$ as $t \to \infty$

Open problems (related to learning dynamics)

- other dynamics: best response to moving average, etc.
- other games (generalizations of Tullock contests)
 - aggregative games
 - Cournot games
 - diagonally strictly concave games [Rosen 65]
- learning with bandit feedback
 - agents know whether they win or not (*i* wins with probability $\frac{x_i}{\sum_i x_i}$)
 - but don't see others' actions
 - study Bayesian/statistical learning models

Extensions of Tullock contests

less well understood – open problems

Parallel contests

- m Tullock contests run in parallel
- each agent can play only one
- if agent *i* picks contest *j*, her utility

$$u_{i,j}(...) = v_{i,j} \frac{x_{i,j}}{\sum_k x_{k,j}} - c_{i,j}(x_{i,j})$$

- $x_{i,j}$: agent *i*'s effort for contest *j*
- *v*_{i,j}: agent i's value for contest j
- *c*_{*i*,*j*}: agent *i*'s cost function for contest *j*
- e.g., crowdsourcing, etc. (applications where agents have multiple options)
- upcoming work: existence/non-existence and computation of pure-strategy Nash equilibrium

Group contests

- (back to only one Tullock contest)
- partition agents into k groups: G_1, G_2, \dots, G_k
- if agent $i \in G_l$ her utility

$$u_i(\mathbf{x}) = \frac{\sum_{j \in G_l} x_j}{\sum_j x_j} - c_i(x_i)$$

- opportunity for free riding
- e.g., political party donation, upkeep of a blockchain system

Discrete action spaces

- instead of any effort $x_i \in \mathbf{R}_{\geq 0}$
- discrete actions $x_i \in X_i$, where X_i is a finite set of $\mathbf{R}_{\geq 0}$
- complexity of computing an equilibrium: open

Refernences

- Best-Response Dynamics in Lottery Contests Abheek Ghosh, Paul W. Goldberg. EC '23.
- Best-Response Dynamics in Tullock Contests with Convex Costs Abheek Ghosh. WINE '23.
- Continuous-Time Best-Response and Related Dynamics in Tullock Contests with Convex Costs
 Edith Elkind, Abheek Ghosh, Paul W. Goldberg. WINE '24.

Remark

general Tullock model (with concave utility), $r \leq 1$

$$u_i(\mathbf{x}) = \frac{x_i^r}{\sum_j x_j^r} - c_i(x_i) \equiv \frac{y_i}{\sum_j y_j} - \overline{c}_i(y_i) = u_i(\mathbf{y})$$

equivalent to the model mentioned earlier by change of variables

•
$$x_i^r \to y_i$$

• $c_i(x_i) \to c_i\left(y_i^{\frac{1}{r}}\right) \to \overline{c}_i(y_i)$

also convex as $r \leq 1$