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Contests

games where

* a set of agents compete

* by putting costly and irreversible effort
* to win valuable prizes

e.g., sports (more later)



Tullock contest

* n agents

e prize = 1 (normalized)

» effort of agenti: x; = 0

o effort profile x = (x1, x5, ..., X;,)

e proportional allocation

* non-negative, continuous, increasing, (weakly) convex cost

e expected utility
Xi

2.j Xj

u;(x) = — ¢;(x;)



Example

Agents | Effort Reward Cost Function Cost Utility
X (proportional) c;(x;)
02 | Zo0m | aqG=2 | o1 |28 01
01 | 1o017 | et =x | o1 | 270
03 2 =05 es(xs) =23 | 009 | 27700




Some applications

» proof-of-work (stake) cryptocurrencies like Bitcoin (Etherium)
o effort (stake): x;
* probability of creating the block:

Xi
Zj X
* computational (opportunity) cost: ¢;(x;)

* rent-seeking (work by Tullock)
* political lobbying and donation
* research & development races

* extensions (discussed later)
 parallel contests: crowdsourcing (including in blockchains)
* group contests




Properties

strictly concave utility function u;(x) = -— ¢ (x;)

— unique best response (BR) BR;(x_;) = argmax u;(z,x_;)
z=20

unique pure-strategy Nash equilibrium (non-trivial)



Talk overview

* learning dynamics

* best-response dynamics

* linear cost functions a.k.a. lottery contest
e convex cost functions

* continuous best-response dynamics, fictitious play, ...

* extensions/variations of Tullock contests
* parallel contests
e group contests
* discrete action spaces



Learning dynamics



Why study learning dynamics?

 predict agents’ behavior

e equilibrium analysis assumes all agents
* know the rules of the game
* know everyone’s utility function
e are fully rational
conceptually and empirically these assumptions may not hold

* l[earning dynamics
* agents respond to the incentives provided by their environment
e ...in adecentralized manner
e e.g., best-response, fictitious play, no-regret dynamics



Best-response (BR) dynamics

* BR dynamics
* initial state:
.X'(O) — (Xl(o)»xz (0)' "'»xn(O))
* update:
Xi(t + 1) — BRi(x_i(t))

* a random agent moves at each time step
(say picked uniformly for this talk)



Linear costs

Xi
uil) = 2 %j @

linear



Results — homogeneous agents

homogeneous: same cost function

convergence to an e-approx equilibrium in

e 2 agents 1 1
log log (E) + log log <;> + 0(1)

* n = 3 agents, with high probability

o nlo (E)+lo log (2 a n1os(r) + 1og (1) + log log [
g(¢) +loglog( ) ). g 8{ - glog

v is function of initial state (in most cases, the smallest positive effort)



Results — non-homogeneous

non-convergence of BR dynamics
* instances that lead to a cycle

e generic: set of instances (and starting points) that lead to cycle have positive
measure

cycle of 6 steps




Proof idea for n = 3 homogeneous agents

combine:

* coordinate descent

* smooth and strongly convex potential function (close to equilibrium)
* Markov chains (away from equilibrium)



Coordinate descent

an arbitrary convex function g(x)




Smoothness and strong-convexity
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Potential function

* smooth and strongly convex function + coordinate descent

N0 (log (i)) convergence to e-approx. minima

* construct such a potential near the equilibrium
e away from the equilibrium: alternative techniques



(A) warm-up (B) total effort small

phase

(C) total effort
sufficiently large

* (equilibrium)




(A) warm-up (B) total effort small

phase

(C) total effort
sufficiently large

* (equilibrium)

Region (C): high total effort
* smooth and strongly convex potential
e potential decreases rapidly (coordinate descent = BR dynamics)



(A) warm-up (B) total effort small

phase

(C) total effort
sufficiently large

* (equilibrium)

Region (B): double-exponentially decreasing Markov chain on total
effort
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Convex costs

weakly convex



Convex costs

(homogeneous agents) convergence to an e-appx equilibrium
e 2 agents (same bound as linear costs)

1 1
log log (E) + log log (;) + 0(1)

* n = 3 agents (weaker bound in n than linear costs)

1
O (nzlog(n) log (g) + log log (;))



Analysis

* analysis for the linear case doesn’t extend. Some challenges:
* no closed-form formula for BR
* no potential function

* in the analysis
* an adversarial/approximate linearization of the BR dynamics
e discounted-sum dynamics



Convex cost

warm-up
phase - :
competition discounted-sum
MAL increases dynamics

H"‘W * (equilibrium)




Discounted-sum dynamics

* initial state:
z(0) = (2z,(0), 2,(0), ..., z,(0)) € R"
* update (for random i):

2+ 1) =B ) 5

JE!

B; picked adversarially in [0, B] where 0 < B < 1.

* we show that this dynamics converges to 0 rapidly



Convergence

* potential function

$(z) = max (Z z-1(z > 0), Z—zj 1(z < o))

J

l _5




Case 1: smaller side




Case 2: larger side, large element




Case 3: larger side, small element
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Continuous BR dynamics

* (usual) BR dynamics:
Xl'(t + 1) — BRi(x_i(t))

xi(t+1) = x,(6) + (BRy(x_i(1) — ()

e small At steps
x;(t + At) = x;(8) + At - (BRy(x_;(D)) — x,(D))

e continuous BR dynamics
dx;(t) s xi(t + At) — x;(¢)
= lim

dt At—0 At

= BRy(x_;(¥)) — x;(t)



Results

e continuous BR dynamics

dx;(t)
o = BR(x-i(0) = x:(6)
Result: converges to an e-approximate equilibrium

for non-homogeneous agents in O (log (i)) time

ldea: Lyapunov function argument
e small At steps

Xl'(t + At) — Xi(t) + At - (BRi(x_i(t)) — Xi(t))

Result: always converges if At <4

instances that cycle if At g for constants kq, k5
ldea: Taylor expansion of the Lyapunov function



Fictitious play and generalizations

+x;(t +1) = BR; (7 Xt x;(7) )

* generalization — weighted average

Xi(t + 1) — BRl (

Wt

ZT 1 Wt

* converges if — 0and ), w; > ast =



Open problems (related to learning dynamics)

e other dynamics: best response to moving average, etc.

» other games (generalizations of Tullock contests)
e aggregative games
* Cournot games
 diagonally strictly concave games [Rosen 65]
* learning with bandit feedback
* agents know whether they win or not (i wins with probability

Xi )
Zj X
* but don’t see others’ actions
 study Bayesian/statistical learning models



Extensions of Tullock contests

less well understood — open problems



Parallel contests

* m Tullock contests run in parallel
* each agent can play only one
* if agent i picks contest j, her utility . -
L,J
Ui () = v
g ! Dk Xk, j

— i j(xi,5)
* X;j: agent i’s effort for contest j

° v; j:agent i’s value for contest j
* ¢;j: agent i’s cost function for contest j

e e.g., crowdsourcing, etc. (applications where agents have multiple options)

e upcoming work: existence/non-existence and computation
of pure-strategy Nash equilibrium



Group contests

* partition agents into k groups: G4, G, ..., Gy,
* ifagent i € (; her utility S
jeG %
u;(x) = — — ci(x;)
2. X

e opportunity for free riding
e e.g., political party donation, upkeep of a blockchain system



Discrete action spaces

* instead of any effort x; € R
* discrete actions x; € X;, where X; is a finite set of R,

e complexity of computing an equilibrium: open






Refernences

* Best-Response Dynamics in Lottery Contests
Abheek Ghosh, Paul W. Goldberg. EC '23.

e Best-Response Dynamics in Tullock Contests with Convex Costs
Abheek Ghosh. WINE 23.

e Continuous-Time Best-Response and Related Dynamics in Tullock
Contests with Convex Costs
Edith Elkind, Abheek Ghosh, Paul W. Goldberg. WINE '24.



Remark

general Tullock model (with concave utility), r <1

u;(x) = lexr c;(x;) = Zy; —¢;(y) = u;(y)
J7J j7]

equivalent to the model mentioned earlier by change of variables

T'
1

e c;(x;) = ¢ (yir) - ¢;(y;) also convexasr < 1
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