

THE UNIVERSITY of EDINBURGH

Do Blockchain Systems Achieve Decentralization? Christina Ovezik

AGT@Blockchains Workshop - WINE 2024 Based on work with Aggelos Kiayias, Dimitris Karakostas, Daniel Woods

What is a blockchain?

- Digital ledger that satisfies a set of liveness and safety properties, **"without relying on trust"**
- Mechanism design perspective: a protocol with **decentralisation** as an objective

Centralised vs Decentralised systems

- A **single party** has full control over the system ("rules them all")
- If it misbehaves or crashes, the system is compromised, e.g.:
 - Censorship
 - Inconsistency
 - Data loss / unavailability

- A number of **independent parties** collectively control the system and guarantee its properties
- If only few nodes are malicious / faulty, the system remains operational
 - No single points of failure

Example of centralised system failure

CrowdStrike IT outage affected 8.5 million Windows devices, Microsoft says

Joe Tidy Cyber correspondent, BBC News

20 July 2024

Blockchains are multi-layered systems

- 8 layers of blockchain systems where (de)centralisation can occur
- Centralisation in some layer threatens desirable system properties, such as safety, liveness, privacy and price stability

Image credit: https://xkcd.com/2347/

Resource

Relevant parties

Properties at risk

Case study: consensus layer

Measuring the decentralisation of block production

Consensus layer: extending the blockchain

- Block creators:
 - Decide which transactions get included in a block
 - and in what order
 - Receive rewards for each new block
- The more blocks one creates the more influence they have in the system

Consensus – Decentralization Analysis

Resource		
=		
Blocks		
DIUCKS		

Relevant parties = Block producers

Properties at risk = Safety / Liveness

Mining and the formation of coalitions

- Economies of scale incentivize the formation of coalitions (mining / stake pools) with their leaders consolidating disproportionate power
- We treat each such coalition as a single entity

Block production dynamics

Bitcoin

Ethereum

Block production dynamics

Cardano

Decentralization metrics

- Assign a value that represents the decentralization of a distribution
- Metrics used in the blockchain decentralization literature:
 - Nakamoto coefficient (NC)
 - Gini coefficient (G)
 - Shannon entropy (SE)
 - Herfindahl-Hirschman index (HHI)
 - Concentration ratios (CR)
 - Number of parties (P)

Number of parties

Nakamoto coefficient

- Represents the minimum number of entities that collectively control a majority of resources (> 50%)
- ...aka the number of parties that need to collude in order to launch a 51% attack
- The higher the Nakamoto coefficient, the higher the resilience to a majority attack

Nakamoto coefficient

AGT@Blockchains Workshop - WINE 2024

Gini coefficient

- Lorenz curve of resources across entities
 - Points: the cumulative ownership of resources (yaxis) by a percentage of entities (in ascending order) (x-axis)
- Gini coefficient: A / A + B
- Maximum equality \Rightarrow Gini = 0
 - Every entity holds the same amount of resources
- Maximum inequality \Rightarrow Gini = 1
 - One entity holds all resources

Gini coefficient

Shannon entropy

- The level (bits) of "information" in a distribution
 - H(X) = -Σ(p(xi) * log2p(xi)) (X: random variable, p(x): probability of event X=x)
- In our case:
 - entropy(S) = Σ (f(Si) * log2f(Si))
 - f(Si): the relative resources of entity Si compared to all resources (as a percentage)
- Resources centralized around a few entities \Rightarrow Lower entropy
- Resources distributed among many entities \Rightarrow Higher entropy
 - Max entropy: when resources are evenly distributed among all entities

Shannon entropy

Herfindahl–Hirschman index (HHI)

- Market concentration metric
- Can be calculated as follows:

$$HHI = \sum_{i=1}^{n} s_i^2$$

Where s_i is the market share of firm *i* (as a whole number, e.g. 20 for 20%)

- U.S. Department of Justice guidelines:
 - HHI < 1,500: competitive market
 - $1,500 \leq HHI \leq 2,500$: moderately concentrated market
 - HHI > 2,500: highly concentrated market
- Values chosen for traditional markets, may need different thresholds for blockchains

Herfindahl-Hirschman index (HHI)

Do all metrics capture the same signal?

Do all metrics capture the same signal?

Open questions & future work

- How do different design choices or components impact decentralization?
 - Proof of Work vs Proof of Stake
 - Simple vs sophisticated reward schemes
 - Proposer-builder separation
- Can we merge all relevant metrics and layers into a single index that provides a holistic representation of a blockchain system's decentralization?

Edinburgh Decentralization Index (EDI) Public dashboard

 Live public dashboard for multiple layers and systems: <u>http://blockchainlab.inf.ed.ac.uk/edi-dashboard/</u> (3) (3) (3) (4) (4) (4)

Edinburgh Decentralisation Index	Edinburgh Decentralisation Index EDI [™]	
	The Edinburgh Decentralisation Index (EDI) studies blockchain decentralisation from first principles, archives relevant datasets, develops metrics, and offers a dashboard to track decentralisation trends over time and across systems.	
2 Dashboard	EDI Website. 🖸	
alpha-release		
È Consensus ∨ ⊡ Tokenomics ∨	Tokenomics	Consensus
} Software ∨ C ☆	This layer describes the decentralisation of token ownership over time.	This layer describes the decentralisation of block production over time.
	Software	Network (Coming Soon)

Thank you! Questions?

christina.ovezik@ed.ac.uk