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Traditional mechanism design

● Aims to design institutions or systems that achieve desired outcomes despite the 
self-interest of participating individuals.  

Desired outcomes: Efficient allocation of valuable resources  (e.g. allocation of blockchain 
space or ad slots, etc.)

Key tools: Implementation via a strongly stable game theoretic equilibrium concept (e.g. 
dominant strategy incentive compatibility)

+ Conceptually simple and clean
- Not always perfectly applicable in practice

                              

Not a goal: lower fees (but yes, lower variance of fees)

stabilize the behavior of self-interested users around uniquely prescribed equilibrium behaviors. 



The Dynamics of 

i) Ethereum’s Transaction Fee Market 

ii) Google’s Auto-bidding Ad-Auctions 
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ii) Google’s Auto-bidding Ad Auctions 



Prior to EIP-1559 Fee Market: Generalized First Price Auction

● Strategic bidding
● Volatile transaction fees
● Transaction delays 

● Second-price auctions will not work: 
they are prone to collusions and 
gaming by miners (non-credible)

*2020



Goals of EIP 1559

● Price discovery for the transaction fee (quickly match demand)
● Incentive-compatible for both miners and users (under “most conditions”)* 
● Price-taking behavior (transparency, efficiency): next-block inclusion                                   

Not a goal: lower fees (but yes, lower variance of fees)
Not a goal: always the same fee

 *T. Roughgarden, Transaction Fee Mechanism Design, EC’21



EIP-1559

Protocol parameters 
● target block size: T/2
● base fee: a dynamical gas price which is burnt and aims to control congestion   

 Protocol User bids Miners Transaction

T/2 = target block size
b = base fee

f  = max fee
p = max priority fee

e = min cost  ✅ or ❎ 

User bids
● max fee: the highest fee the user is willing to pay overall
● max priority fee: the maximum tip the user is willing to pay to the miner



Transaction Fees

● Base fee is burnt

● user pays transactions 
fees at most equal to 
max fee

● miner’s tip at most the 
max priority fee set by 
the user

base fee

miner’s tip

burnt

miner



Fees and Tips

● Examples

Protocol User Miner Transaction Why?

b = 6 f = 10, p = 3 e = 2 ✅ included f>b+e,  p>e

b = 6 f = 10, p = 1 e = 2 ❎ not included f>b+e but p<e 

b = 6 f = 7, p = 3 e = 2 ❎ not included p>e but f<b+e

● Condition for inclusion by miner:

● Left side:  miner’s tip 



EIP-1559 Base fee Dynamics



Base fee

● d =  adjustment parameter or step size (think d = 12.5%)
● T/2 =  target block size (think T = 952)
● gt =  number of included transactions in block Bt, t>0 given that the base fee is bt.

The base fee, bt+1, at block height t+1 is  



Goals of this work

● Under which conditions do the base fee dynamics self-stabilize?
● What happens outside the stability regime?
● Stress-test the system by pushing it past its stability regime.



EIP-1559: Evolution of the Dynamics

User demand described by

● Stationary distribution of valuations: each user has a valuation

● Optimal base fee: b*

Will EIP-1559 find/converge to b* for different design choices?



● Example: 3000 users, equally 
spaced valuations in 200-230 Gwei.

● Many users with similar valuations: 
base fee jumps (by a step of d) from 
below to above

 Oscillations



Convergence

Theorem (Informal) 
The base fee dynamics always converge to a theoretically predictable neighborhood of the “correct” 
value. Moreover, for any reasonable distribution of user valuations, there exists a low enough 
adjustment parameter (step-size), for which the base fee dynamics precisely converge to that 
(theoretically predictable) “correct” value.

Proof Hint: Lyapunov function arguments



One meta-theorem for all convergence results

Theorem 
Suppose a continuous-time dynamical system obtained from a differential equation on compact space X 
(or a discrete time dynamical system obtained by iterating a continuous map F:X→X)
admits a Lyapunov function L:X→ , i.e.,

                                            dL/dt ≼0   (resp. L(F(p))≼L(p))

with equality at p only when p is an equilibrium.

THEN

the limit set of an orbit {p(t)} is a compact connected set consisting entirely of equilibria and upon 
which the Lyapunov function L is constant. 

 [Losert, Akin 1983]



Convergence

Theorem (Informal) 
The base fee dynamics always converge to a theoretically predictable neighborhood of the “correct” 
value. Moreover, for any reasonable distribution of user valuations, there exists a low enough 
adjustment parameter (step-size), for which the base fee dynamics precisely converge to that 
(theoretically predictable) “correct” value.

Proof Hint: Lyapunov function arguments

● “Low enough” depends on the distribution of valuations.
● A low enough step size may be impractical.

This raises the question: what happens if this is not the case?



Chaos and Instabilities

Theorem (Informal) 
For every positive adjustment parameter, there exist a (reasonable) distribution of valuations, so that 
the base fee dynamics become Li-Yorke chaotic.

Li-Yorke chaos: 

● Uncountably many pairs of trajectories get arbitrarily close together (but never 
intersect) and move apart indefinitely.

● We cannot tell which of the two trajectories will be realized in the future: this is 
exactly what unpredictable means.



Definition of Li-Yorke Chaos

Scrambled set:  Given a dynamical system with update rule f, a pair of points x and y is 
called scrambled if the trajectories get arbitrarily close, i.e., 

and then the trajectories move apart infinitely often  

A set S is called scrambled if all pairs of points in S are scrambled. 

Li-Yorke chaos:  A discrete time dynamical system is called chaotic if (a) for each natural 
number k>0 there exists a periodic point of period k and (b) there is an uncountably infinite 
set that is scrambled.



How to prove chaos?

● As long as the dynamical system is continuous, discrete-time and 1-dimensional, i.e. 
the system has only one degree of freedom then there exist several efficiently checkable 
conditions that imply Li-Yorke chaos.

  Specifically, period 3 implies chaos. [Li, Yorke 1975]

● Prototypical example: 
Logistic map f(x) = rx(1-x), r constant, 0<x<1 

 



How to showcase chaos?
Logistic map F(x)= r x(1-x)

                  Time-series plots                                               Bifurcation plots
 



How to showcase chaos?
EIP-1559

                  Time-series plots                                               Bifurcation plots
 



Bifurcation plots

● Bifurcation plot with respect to 
the adjustment parameter 
(learning rate)

● Uniform distribution of 
valuations with range = 20Gwei.

● As the step size increases, the base 
fee becomes chaotic



Bifurcation plots

● Bifurcation plot with respect 
to the range of valuations 

● Step size d = 0.125 (default).

● As the range of valuations 
decreases, the base fee 
becomes chaotic



EIP-1559: (Time-average) Performance



EIP-1559: Evolution of the Dynamics

User demand described by

● Stationary distribution of valuations: each user has a valuation

● Optimal base fee: b*

We have seen that the day-to-day dynamics can be chaotic.

Will EIP-1559 find/converge to b* in a time average sense for different design choices?



Time averages

● Step size d = 0.125 (default): skip = 400, iterations = 600.

 ● Average block size● Average base fee



EIP-1559: Chaos and Optimality



Time-average Performance 

Theorem (Informal) 
Regardless of the day-to-day behavior of EIP-dynamics, the time average utilization will converge to 
a narrow range around its optimal/target value.

● Our lower bound is equal to the target utilization level whereas our upper bound 
is approximately 6% higher than optimal. 

● Empirical evidence is shown in great agreement with these theoretical predictions. 
Specifically, the historical average was approximately 2.9% larger than the target rage 
under Proof-of-Work and decreased to approximately 2.0% after Ethereum's 
transition to Proof-of-Stake.



Time-average Performance 

Theorem (Informal) 
Regardless of the day-to-day behavior of EIP-dynamics, the time average utilization will converge to 
a narrow range around its optimal/target value.

Proof Hint 1: This is not a regret-based, Price of (Total) Anarchy type of analysis.

Proof Hint 2:  It easier to prove this theorem for an (exponential variant) of EIP-1559. 



EIP-1559: Average Block Size (Theoretical Bound & 
Simulations)



EIP-1559: Market Data



Discussion

● EIP-1559 is simple and makes transaction fees more predictable

● Unintended consequences:

○ Oscillations

○ Overshoots block size target

● Both have lessened since the Merge

● Optimality is approximately possible in fee markets  with non-convergent 
behavior

● We can still analyze the system even out of equilibrium



The Dynamics of 

i) Ethereum’s Transaction Fee Market 

ii) Google’s Auto-bidding Ad-Auctions 



The Dynamics of Google’s Auto-bidding Ad-Auctions 

Renato Paes Leme, Georgios Piliouras, Jon Schneider, Kelly Spendlove, Song 
Zuo 
Complex Dynamics in Auto-bidding Systems 
ACM Conference on Economics and Computation (2024).

Gagan Aggarwal et al. 
Auto-bidding and Auctions in Online Advertising: A Survey 
ACM SIGecom Exchanges, 22 (2024)



Autobidding Auction Overview

advertisers autobidders auction

Autobidder 1

Autobidder i

Autobidder n

targets τi

prices pij
allocation xij 

bids bij

auction determines 
prices and allocations

Item 1

Item j

Item m

advertisers give target to 
autobidder

autobidders submit bids to 
central auction

... ... ...



Complex High-Dimensional Auto-bidding Dynamics



Final Discussion & Open Directions

● Simple, practical mechanisms can lead to complex behaviors.

● Embracing complexity can help us design more robust solutions.

● Could instability, chaos be seen an asset instead of a problem?

(e.g. chaotic dynamics as pseudo-random generators)

● The advent of AI and/or decentralization will probably create 

increasingly complicated real world markets. 

New ideas are needed…

 

  

 



Thank you


